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a b s t r a c t

This paper presents a reduced analytical modeling method for the initial optimal design of thermoelastic

micromachined actuators. The key aspects of the model are a Green’s function formulation of the axisym-

metric heat conduction equation that incorporates an internal heat source and the solution of the ther-

moelastically forced bending wave equation. Model results of a representative thermoelastic structure

include transient temperature and sinusoidal steady state transverse displacement. Comparison with

finite element analysis shows excellent agreement with favorable computational costs. Model constraints

at low frequencies are identified and discussed. The computational efficiency of the analytical model

makes it a more viable modeling method for design optimization.

Ó 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Thermoelastic actuation of plates and beams has proven to be a

viable actuation mechanism for micromachines (Lammerink et al.,

1990; Popescu et al., 1996; Brand et al., 1997; Hornung and Brand,

1999; Rufer et al., 2006). Thermoelastic devices utilize Joule heat-

ing in a resistive element to generate a spatially non-uniform tem-

perature field and hence non-uniform thermal expansion. The

results are thermal force and moment resultants that cause deflec-

tions of structures such as beams and plates. In many cases, the

deflection is enhanced by the non-uniform thermal expansion

coefficients of composite structures (Chandrasekaran et al., 2003;

Paul and Baltes, 1999).

A common characteristic of thermomechanical devices is the

substantial design space. Device parameters include structural

geometry, such as plate radius and thickness, as well as heater

geometry. Typically, the devices are laminated composite struc-

tures, which introduces layer thicknesses as another design vari-

able. The heater formation may also increase design complexity

by adding new variables such as doping concentration for im-

planted resistors. Because of the broad design space, design opti-

mization is best suited to select the proper combination of

design variables for superior device performance. Finite element

analysis (FEA) proves computationally costly for design optimiza-

tion because of the large number of design variables. Therefore,

an analytical model with low computational cost is desirable for

design optimization of themoelastic micromachines.

Analytical solutions for thermoelastic vibration of beams and

plates are prevalent in the literature. Lammerink et al. (1990,

1991, 1992) analytically treated a homogeneous silicon beam ther-

moelastically forced by a sheet source that simulated a film resis-

tor heater on the top surface. Heat conduction along the beam was

not taken into account. They also considered a distributed source

within the beam under similar assumptions. Paul and Baltes

(1999) analyzed a 1-D clamped composite plate in Cartesian coor-

dinates with a heating resistor. Their thermal model separated the

plate into two sections. The inner section was assumed to have a

uniform temperature field created by the heater. The outer section

was assumed to maintain the ambient temperature. This created

an infinite temperature gradient at the heater edge which caused

over-prediction of the thermal forcing function. Irie and Yamada

(1978) studied the vibration of circular and annular plates with

sinusoidally varying heat flux on one surface and thermal insula-

tion on the other. The temperature in this study was assumed to

be uniform in the radial direction due to the large aspect ratio.

Prasanna and Spearing (2007) modeled thermoelastic cantilever

beam vibrations using thermal lumped elements to approximate

heat transfer within the beam and calculate the thermal moment.
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The thermal wavelength had to be much larger than the lumped

elements for model accuracy. At high frequencies, the thermal

wavelengths become smaller than the structure, requiring the den-

sity of elements within the beam or plate to increase for model

accuracy.

The goal of the current study is to formulate a simplified analyt-

ical model of the thermoelastic actuation of the micromachined

ultrasonic proximity sensor (Chandrasekaran et al., 2002) shown

in Fig. 1. The analytical model will accurately describe device per-

formance while minimizing computational cost for design optimi-

zation. Furthermore, an analytical solution provides scaling

relations from which critical parameters in the design are

identified.

The ultrasonic proximity sensor (Chandrasekaran et al., 2002)

consists of a circular composite diaphragm with an axisymmetric

heater for actuation. The heater consists of two semicircular dif-

fused resistive elements. The diaphragm also contains arc and ta-

pered piezoresistors (Campbell, 2001) for ultrasonic sensing

(Chandrasekaran et al., 2002) which are not treated in the current

study. The first level of actuation modeling of the device is the ana-

lytical solution of the equations of motion for an isotropic, silicon

plate subject to homogeneous boundary conditions. The plate mo-

tion is governed by the axisymmetric bending wave equation un-

der thermal forcing due to a non-uniform temperature

distribution. The axisymmetric heat conduction equation with heat

generation governs the non-uniform temperature field. The heater

is modeled as a single, internal 2-D harmonic source. The radial

and transverse thermal gradients couple into the thermal forcing

term in the bending wave equation.

This paper is organized as follows. The bending wave equation

under thermal forcing is derived in Section 2. The temperature field

is found using Green’s functions in Section 3. In Section 4 the bend-

ing wave equation is solved after incorporating the temperature

field solution. In Section 5 results, including temperature distribu-

tion and deflection mode shapes, are presented and scaling param-

eters are discussed. Concluding remarks are contained in Section 6.

2. Mechanical formulation

In this section, the axisymmetric bending wave equation of an

isotropic plate under thermoelastic loading from an arbitrary tem-

perature field is derived. The derivation assumes that Kirchhoff’s

hypothesis is valid (Reddy, 1999). The cross-section of the axisym-

metric circular plate with internal heat source is shown in Fig. 2.

2.1. Dynamic equilibrium

The equations of motion for an axisymmetric, circular plate are

(Reddy, 1999):

1

r

dðrQ rÞ

dr
¼ t _wþ qA

€w ð1Þ

and

Q r ¼
dMr

dr
þ
Mr ÿMh

r
; ð2Þ

where Qr is the transverse shear force resultant, Mr and Mh are the

radial and tangential moment resultants, _w is the velocity in the ax-

ial direction, €w is the acceleration in the axial direction, t is the

damping coefficient per unit area, and qA is the areal density given

by

qA ¼

Z H=2

ÿH=2

qd�z: ð3Þ

Damping in (1) comes from a variety of sources including radiation

resistance, thermoelastic dissipation, radiation of bending waves

into the supporting structure, etc. The damping coefficient per unit

area is related to the classical second-order system damping coeffi-

cient, f (Bendat and Piersol, 2000), and the natural frequency of an

isotropic, clamped, circular plate, xn (Leissa, 1993), as follows

(Bendat and Piersol, 2000):

t ¼ 2xnfqA: ð4Þ

The classical second-order system damping coefficient, f, is ex-

tracted from experimental data for a device with geometry similar

to that given in Table 1 and is shown to be approximately 0.008

(Chandrasekaran et al., 2002). The fundamental natural frequency

of an isotropic plate is found in Section 4.

2.2. Kinematic equations

Kirchoff’s hypothesis suggests the following displacement field

for a circular, axisymmetric plate (Reddy, 1999):

w ¼ w0ðrÞ and u ¼ u0ðrÞ ÿ �z
@w0ðrÞ

@r
; ð5Þ

Fig. 1. The micromachined ultrasonic proximity sensor contains a Wheatstone

bridge of two pairs of diffused arc and tapered piezoresistors for sensing. Two

semicircles form the diffused resistive heater. Fig. 2. Axisymmetric, isotropic plate with an internal, diffused heater.
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where w and u are the displacement fields in the vertical and radial

directions, respectively, and w0 and u0 are the local displacements

in the vertical and radial directions, respectively, ‘‘at the reference

surface’’, i.e. �z ¼ 0. The linear-strain displacement relationships for

the axisymmetric plate are (Reddy, 1999):

er
eh

� �

¼
@u
@r
u
r

( )

: ð6Þ

Upon substituting the displacement fields given in (5) into (6), the

strain equations become

er
eh

� �

¼
du0
dr

ÿ �z d2w0

dr2

u0
r
ÿ �z 1

r
dw0

dr

8

<

:

9

=

;

: ð7Þ

2.3. Constitutive relationship

In developing the stress–strain relationships, it is assumed that

the material is isotropic. The assumption of isotropic elastic prop-

erties for silicon is a simplification based on its moderate degree of

anisotropy (Madou, 2002). Ignoring transverse loading, the stress–

strain relationship for an axisymmetric plate under thermal load-

ing is defined by Reddy (1999)

rr

rh

� �

¼ ½Q �
er
eh

� �

ÿ
Ec

1ÿ m
hðr;�z; tÞ

1

1

� �

; ð8Þ

where E is the Young’s modulus, m is Poisson’s ratio, c is the coeffi-

cient of thermal expansion, h is the spatially and temporally depen-

dent temperature difference with respect to ambient temperature

(h = T ÿ T1), and [Q] is the stiffness matrix

½Q � ¼
E

1ÿ m2
1 m

m 1

� �

: ð9Þ

The radial and tangential moments per unit length are

Mr

Mh

� �

¼

Z H=2

ÿH=2

rr

rh

� �

�zd�z: ð10Þ

Integrating (10) yields

Mr

Mh

� �

¼ ÿD
1 m

m 1

� � d2w0

dr2

1
r

dw0

dr

8

<

:

9

=

;

ÿ
MT

MT

( )

; ð11Þ

where the thermal moment is (Reddy, 1999)

MT ¼

Z H=2

ÿH=2

E

1ÿ m
h r;�z; tð Þc�zd�z: ð12Þ

Substituting (11) into (2) gives the shear force per unit length,

Q r ¼ ÿD
d
3
w0

dr
3

þ
1

r

d
2
w0

dr
2

ÿ
1

r2
dw0

dr

 !

ÿ
dM

T
r

dr
: ð13Þ

2.4. Displacement differential equation

To obtain a displacement equation in terms of strictlyw0, (13) is

substituted into (1) to obtain (Reddy, 1999):

Dr4w0 þ t _w0 þ qA
€w0 ¼ ÿr2MT ; ð14Þ

where r4 is the axisymmetric biharmonic operator in cylindrical

coordinates (Kaplan, 2003). The left hand side of (14) is the bending

wave equation while the right hand side serves as the distributed

thermal forcing function. The first term on the left accounts for stiff-

ness in the plate. The second and third terms are due to damping

and inertia, respectively. The temperature field is needed to calcu-

late the thermal forcing term on the right hand side.

The boundary conditions for a clamped plate are (Leissa, 1993):

w0ðr ¼ aÞ and
dw0

dr

�

�

�

�

r¼a

¼ 0: ð15Þ

Also, the displacement and its derivative remain finite at the origin

(Leissa, 1993):

w0ðr ¼ 0Þ and
dw0

dr

�

�

�

�

r¼0

< 1: ð16Þ

Although axisymmetry implies that the deflection slope, dw0

dr
, is zero

at the plate center, it is shown in Section 4.3 that it is sufficient to

impose that the slope remain finite.

3. Temperature solution

A solution of the temperature field from the heat diffusion

equation is needed to form the thermal forcing term on the right

hand side of (14). The temperature field is independent of the elas-

tic strain rate in the device as long as the time scale of heat transfer

is not much greater than the time scale of vibration (Speziale,

2001):

tht
1

f
; ð17Þ

where f is the frequency and the time scale of heat transfer is

tht ¼
a2

a
; ð18Þ

where a represents the largest length scale of the structure and a is

the thermal diffusivity. Thus, the heat diffusion equation is decou-

pled when

a2

a
f 1: ð19Þ

A discussion of the implication of assumption (19) is contained in

Section 5.

A circular diaphragm with non-uniform internal heat genera-

tion is shown in Fig. 2. The 2-D heat diffusion equation governs

temperature distribution in the plate and is written in terms of

the temperature difference as Ozisik (1993)

r2
hþ

1

j
gðr; z; tÞ ¼

1

a
@h

@t
; ð20Þ

where j is the thermal conductivity, r2 is the axisymmetric

Laplacian, and g(r,z, t) is the internal heat generation function.

The heater is assumed to be cylindrical and contained within the

plate thickness such that the internal heat generation function

becomes

Table 1

Material properties and geometry.

Property Value

a 500 lm

H 6 lm

H1 4.5 lm

H2 5.5 lm

b 30 lm

g0 14.1 lW/lm3

a 9.56Eÿ5 m2/s

j 1.56Eÿ5 kg mm/K s3

q 2330 kg/m3

E 150 GPa

m 0.27

c 2.6Eÿ6 1/K

f 0.008
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gðr; z; tÞ ¼ g0½UðrÞ ÿ Uðr ÿ bÞ� � ½Uðzÿ H1Þ ÿ Uðzÿ H2Þ�Re½e
jxt�; ð21Þ

where U(x) is the unit step function (Kreyszig, 2006) and g0 is the

heat generation amplitude. The formation of the diffused heater is

assumed to have no effect on the thermodynamic or elastic proper-

ties of the material.

Note, the axial coordinate origin in Fig. 2 used to form the dis-

placement (14) is shifted from the center to the bottom of the plate

in (20) and (21), and the rest of the temperature analysis to in-

crease the solution simplicity. The new axial coordinate is referred

to as z ¼ �zþ H
2
.

Eq. (20) is a partial differential equation of second order in

space and first order in time requiring four boundary conditions

and one initial condition. Assumptions are made to arrive at simple

boundary conditions.

First, the thermal diffusion length scale is assumed to be smaller

than the radius of the plate so the temperature around the circum-

ference of the diaphragm is maintained at the ambient

temperature,

hðr ¼ aÞ ¼ 0: ð22Þ

This assumption is violated at low frequencies because the diffusion

length scales as Ozisik (1993)

kdiff /

ffiffiffiffiffi

a
x

r

: ð23Þ

Thus, at low frequencies the diffusion length scale will become on

the order of the plate radius. The prescribed boundary condition

will artificially force the temperature to zero at the plate edge. This

will create an erroneously large radial temperature gradient and

over-predict the thermal forcing function.

Convective boundary conditions exist between the diaphragm

surfaces and the air. The formulation of a convective coefficient

on the diaphragm surfaces is non-trivial and markedly increases

the complexity of the solution. For simplicity of initial studies,

the heat transfer between the air and surfaces of the diaphragm

is ignored such that the top and bottom surfaces are assumed to

be thermally insulated,

@h

@z

�

�

�

�

z¼0

¼
@h

@z

�

�

�

�

z¼H

¼ 0: ð24Þ

The final boundary condition requires a finite temperature dif-

ference at the center of the diaphragm,

hðr ! 0Þ < 1: ð25Þ

In addition, the initial temperature of the diaphragm is also as-

sumed to be ambient

hjt¼0 ¼ 0: ð26Þ

A Green’s function formulation is used to find the solution to

(20). Green’s functions are useful for solving non-homogeneous,

transient heat conduction problems. The axisymmetric, two-

dimensional Green’s function represents the temperature at posi-

tion r and time t due to a ring heat source of unity strength

located at r0 that impulses at time s. The solution for the tem-

perature difference in terms of Green’s functions is (Ozisik,

1993)

hðr; tÞ ¼

Z

Gðr; tjr0;sÞjs¼0Fðr
0ÞdA

0

þ
a
j

Z t

s¼0

Z

gðr0;sÞG r; tjr0;sð ÞdA
0
dsþa

Z t

s¼0

X

N

i¼1

Z

G r; tjr0;sð Þjr0¼ri

1

ji

fidlids;

ð27Þ

where F(r) is the initial condition, N represents the number of

boundaries and fi is extracted from the general boundary condition

on the temperature difference,

ji

@h

@ni

þ hih ¼ fiðr; tÞ: ð28Þ

The three terms in (27) account for the initial conditions, internal

heat generation, and non-homogeneous boundary conditions,

respectively. The first and third terms are zero due to the homoge-

neous boundary conditions and the zero initial condition given in

(22)–(26). Thus, (27) simplifies to

hðr; tÞ ¼
a
j

Z t

s¼0

Z

gðr0; sÞGðr; tjr0; sÞdA0
ds: ð29Þ

The Green’s function is found in the following section using a sep-

aration of variables technique found in Ozisik (1993).

3.1. Determination of the Green’s function

First, the homogeneous form of (20) and boundary conditions

(22)–(25) are solved given a general initial condition F(r,z). Then,

the solution is compared to (27) and the Green’s function at s = 0

is extracted (Ozisik, 1993). Finally, the full Green’s function is

found by replacing t by t ÿ s (Ozisik, 1993).

The solution to the homogeneous heat conduction problem is

hh ¼

Z H

0

Z a

0

Fðr0; z0Þ
X

1

m¼1

X

1

n¼0

1

Nnm

J0 mmr
0ð ÞJ0 mmrð Þ

� cos gnz
0ð Þ cosðgnzÞe

ÿk2nmatr0 dr
0
dz

0
; ð30Þ

where the eigenvalues are found from

gn ¼
np
H

; n ¼ 0;1;2 . . .

and

J0ðmmaÞ ¼ 0; m ¼ 1;2;3 . . .

and k2nm ¼ m2m þ g2
n. Comparing (30) with (29) and replacing t with

t ÿ s, the general Green’s function is extracted as

Gðr; z; tjr0; z0; sÞ ¼
X

1

m¼1

X

1

n¼0

1

Nnm

J0ðmmr
0ÞJ0ðmmrÞ

� cosðgnz
0Þ cosðgnzÞe

ÿk2nmaðtÿsÞ: ð31Þ

3.2. Final temperature solution formulation

Substituting the heat generation (21) and the Green’s function

(31) into (29) and integrating yields

hðr;z;tÞ¼Re
2ag0b

ja2
X

1

m¼1

1

mm

J1 mmbð ÞJ0 mmrð Þ

J21ðmmaÞ
�
X

1

n¼0

Bn cosðgnzÞ
ejxt ÿeÿk2nmat

jxþk2nma

" #

;

ð32Þ

where

Bn ¼
n ¼ 0; H2ÿH1

H
;

n > 0; 2
np sin np H2

H

ÿ �

ÿ sin np H1

H

ÿ �� �

:

(

Note that the solution has a transient term, eÿk2nmat . The transient

solution is sensitive to the temperature boundary condition (22)

at r = a. A mixed boundary condition would provide a more general

solution but is not obvious to formulate.
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3.3. Steady-state solution

Eliminating transient terms in (32) yields the sinusoidal steady-

state solution. It is easily seen that eÿk2mnat decays to zero as time

progresses. Thus, the steady state solution is

hðr; z; tÞ ¼ Re
2ag0be

jxt

ja2
�
X

1

m¼1

J1 mmbð ÞJ0 mmrð Þ

mmJ
2
1 mmað Þ

X

1

n¼0

Bn cos gnzð Þ

jxþ k2nma

" #

:

ð33Þ

4. Displacement solution

Now that the temperature field has been formulated, the solu-

tion to the bending wave equation under thermal forcing (14) is

found. To find the sinusoidal steady-state solution, the displace-

ment is assumed to have the form

w0 ¼ Re �wðrÞejxt
� �

: ð34Þ

Substituting the steady-state temperature solution (33) into (12)

and integrating results in the thermal moment,

MT ¼
Ec

1ÿ m
2ag0bH

2

jp2a2

Re ejxt �
X

1

m¼1

J1 mmbð ÞJ0 mmrð Þ

mmJ
2
1ðmmaÞ

X

1

n¼1

ÿ1ð Þn ÿ 1

n2

Bn

jxþ k2nma

" #

: ð35Þ

Taking the axisymmetric Laplacian of the thermal moment gives

r2MT ¼ Re ejxt
X

1

m¼1

J0ðmmrÞ1ðmmÞ

" #

; ð36Þ

where

1ðmmÞ ¼
Ec

1ÿ m
2ag0bH

2

jp2a2
mmJ1 mmbð Þ

J21 mmað Þ

X

1

n¼1

1ÿ ÿ1ð Þn

n2

Bn

jxþ k2nma
:

Substituting (36) into (14) yields

r4 �wÿ
1

D
ðx2qA ÿ jxtÞ �w ¼

1

D

X

1

m¼1

J0ðmmrÞ1ðmmÞ: ð37Þ

4.1. Homogeneous solution

First, the solution to the homogeneous equation,

r4 �wh ÿ
1

D
ðx2qA ÿ jxtÞ �wh ¼ 0 ð38Þ

is found. Factoring (38) results in

ðr2 ÿ v2Þðr2 þ v2Þ�wh ¼ 0; ð39Þ

where

v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2qA ÿ jxt
D

r

: ð40Þ

The complete solution to the homogenous equation is obtained by

superimposing the solutions to the equations

ðr2 þ v2Þ �wh1 ¼ 0 ð41Þ

and

ðr2 ÿ v2Þ �wh2 ¼ 0: ð42Þ

These equations are the zeroth order Bessel’s equation and Modified

Bessel’s equation, respectively. Thus, the homogeneous solution is

(Leissa, 1993)

�whðrÞ ¼ c1J0ðvrÞ þ c2Y0ðvrÞ þ c3I0ðvrÞ þ c4K0ðvrÞ: ð43Þ

The fundamental natural frequency is found from the homoge-

neous, undamped solution (Leissa, 1993). After applying (16), the

clamped boundary conditions are written in matrix form as

J0ðvrÞ I0ðvrÞ

ÿvJ1ðvrÞ vI1ðvrÞ

� �

¼ 0: ð44Þ

The fundamental natural frequency is found by taking the determi-

nant of (44) and setting it equal to zero. The result is (Leissa, 1993)

xn ¼
10:2158

a2

ffiffiffiffiffiffi

D

qA

s

: ð45Þ

4.2. Particular solution

The particular solution takes the form of the thermoelastic forc-

ing function on the right hand side of (37),

�wpðrÞ ¼
X

1

m¼1

c5J0ðmmrÞ: ð46Þ

Plugging the particular solution into (37) and solving for c5,

c5 ¼
1

D

1 mmð Þ

m4m ÿ v4
: ð47Þ

4.3. Final solution

The total solution is given by the summation of the homoge-

neous and particular solutions,

�wðrÞ ¼
X

1

m¼1

c1J0ðvrÞ þ c2Y0ðvrÞ þ c3I0ðvrÞ þ c4K0ðvrÞ þ c5J0ðmmrÞ:

ð48Þ

Applying the finite boundary conditions (16), c2 and c4 must be zero

(Leissa, 1993). Applying the clamped boundary conditions (15) and

solving for the remaining constants in terms of c5, the final solution

is

�wðrÞ ¼
X

1

m¼1

c5½J0ðmmrÞ þ CmJ0ðvaÞI0ðvrÞ ÿ CmI0ðvaÞJ0ðvrÞ�; ð49Þ

where

Cm ¼
mmJ1 mmað Þ

vI0ðvaÞJ1ðvaÞ þ vI1ðvaÞJ0ðvaÞ
: ð50Þ

5. Results

The material parameters and geometry used to form the results

are motivated by a typical MEMS structure (Chandrasekaran et al.,

2002) and are outlined in Table 1. The temperature difference, h,

versus the plate radius and thickness are shown in Figs. 3 and 4,

respectively, for multiple frequencies. The phases of the tempera-

ture differences are referenced to the phases of the maximum tem-

perature difference at the plate center for each frequency. The

center deflection frequency response and deflection mode shapes

are given in Fig. 5. The phases of the deflection mode shapes are

also referred to the phase of the maximum deflection at the plate

center for each frequency. In all of the plots, FEA results are pro-

vided as verification of the analytical solution. The FEA results were

found in COMSOL Multiphysics using the ‘‘General Heat Transfer’’

and ‘‘Axial Symmetry, Stress Strain’’ modules. The structural fre-

quency response analysis was coupled to a frequency domain anal-

ysis of the heat transfer equation formed by specifying an internal

heat generation equal to ÿjxjT/a in the static heat transfer
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equation. Vertical deflection of the midplane of the plate was re-

stricted at r = a. Radial deflection was also bound at the plate edge.

The mesh consisted of 6,144 Lagrange, triangular elements that are

linear in temperature and quadratic in stress and strain. The com-

putational time of the analytical solution for a single frequency

using Matlab is 96 ± 15 ms on a Dual Core Opteron 64-bit worksta-

tion with 12 GB of RAM, which compares favorably to the 6.80 s

calculation in COMSOL.

The temperature difference as a function of radius is shown in

Fig. 3 for several frequencies. At high frequencies the thermal dif-

fusion length scale is smaller than the diaphragm radius and the

temperature difference approaches zero inward of the plate edge.

In this case, the zero temperature difference boundary condition

at the diaphragm edge (22) is justified. At lower frequencies, the

period of oscillation and the thermal time constant become compa-

rable, as do the thermal diffusion length scale and the diaphragm

radius, resulting in heat diffusion to the diaphragm edge. The edge

boundary condition (22), however, forces the temperature change

to zero. Thus, at low frequencies the edge boundary condition has a

significant impact on the temperature solution. A mixed boundary

condition at the diaphragm edge, such as Ozisik (1993)

j
@h

@r
þ hrh ¼ 0; ð51Þ

would provide a more accurate representation of the device

structure at low frequencies. The constant, hr, that relates the

temperature difference to its gradient, however, is not trivial and

may be geometry and/or material dependent.

There is a minor gradient in temperature, h, between the top

and bottom of the plate as shown in Fig. 4 since the thermal diffu-

sion length scale is large in comparison to the thickness of the plate

for the frequencies studied. The temperature decreases at higher

frequencies where the period of oscillation is less than the thermal

time constant and there is not enough time for heat diffusion to

occur.

The frequency response of the center deflection is shown in

Fig. 5a. The resonance is seen to occur at approximately 94 kHz.

Mode shapes of the deflection of the center of the plate in the flat-

band and near the resonant frequency are shown in Fig. 5b. At
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Fig. 5. Coupled thermal-displacement solution.

B.A. Griffin et al. / International Journal of Solids and Structures 48 (2011) 1466–1473 1471



100 kHz, just beyond the first resonance, the mode shape displays

second radial mode behavior. Note that the classical second-order

system damping coefficient, f = 0.008, is extracted from experi-

mental data (Chandrasekaran et al., 2002) and shapes the width

and height of the resonant peak.

Also shown in Fig. 5a are the magnitude and phase of the center

deflections of the top, middle, and bottom surfaces of the plate cal-

culated using FEA. It is interesting to note that at frequencies lower

than resonance, there are significant differences in deflection be-

tween the top and bottom surfaces, which indicates the signifi-

cance of thermal expansion at the radial center of the plate

where the heater is located. After first examination, one might sus-

pect that this is a residual of the temperature boundary condition

at the diaphragm radius. Upon further inspection, the thermal

expansion is significant at frequencies where the radial tempera-

ture boundary condition is justified. For example, at 50 kHz, the

thermal expansion is still significant in Fig. 5a while the thermal

diffusion length scale is clearly less than the diaphragm radius in

Fig. 3. In Fig. 6 the phase locked deflections of the top, middle,

and bottom surfaces of the plate are shown at 10 and 50 kHz.

Clearly, in Fig. 6b, the effect of the thermal expansion is isolated

to the region around the heater. Fig. 6b shows a more significant

thermal expansion effect at a forcing frequency of 1 kHz. As previ-

ously discussed in Section 3, however, the temperature boundary

condition at the diaphragm radius at 1 kHz is violated. In addition,

significant thermal expansion of the thickness of the diaphragm is

a direct violation of classical plate theory that assumes the strain in

the transverse direction of the plate to be negligible. Clearly, a

higher order thermomechanical analytical model would be needed

to capture the affects of thermal expansion away from resonance.

6. Conclusions

An analytical model for thermoelastic actuation of an isotropic,

circular plate has been developed. The analytical solutions of the

bending wave and heat conduction equations were found. First,

the bending wave equation under thermal forcing was derived.

Then, the temperature field created by an internal heater was

determined using a Green’s function formulation. The resulting

temperature field was applied as the thermal forcing term in the

bending wave equation. Comparison of the analytic and finite ele-

ment results shows excellent agreement. The analytical solution

has considerably lower computational costs, making it suitable

for design optimization.

Future work on the modeling of this device will include com-

posite layers, the impact of fabrication induced in-plane residual

stress, and further investigate thermal expansion as a significant

contributor to mechanical deflection. The results will be compared

to laser vibrometer measurements of an existing thermoelastic

MEMS.
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